19 research outputs found

    Joint Multi-Person Pose Estimation and Semantic Part Segmentation

    Full text link
    Human pose estimation and semantic part segmentation are two complementary tasks in computer vision. In this paper, we propose to solve the two tasks jointly for natural multi-person images, in which the estimated pose provides object-level shape prior to regularize part segments while the part-level segments constrain the variation of pose locations. Specifically, we first train two fully convolutional neural networks (FCNs), namely Pose FCN and Part FCN, to provide initial estimation of pose joint potential and semantic part potential. Then, to refine pose joint location, the two types of potentials are fused with a fully-connected conditional random field (FCRF), where a novel segment-joint smoothness term is used to encourage semantic and spatial consistency between parts and joints. To refine part segments, the refined pose and the original part potential are integrated through a Part FCN, where the skeleton feature from pose serves as additional regularization cues for part segments. Finally, to reduce the complexity of the FCRF, we induce human detection boxes and infer the graph inside each box, making the inference forty times faster. Since there's no dataset that contains both part segments and pose labels, we extend the PASCAL VOC part dataset with human pose joints and perform extensive experiments to compare our method against several most recent strategies. We show that on this dataset our algorithm surpasses competing methods by a large margin in both tasks.Comment: This paper has been accepted by CVPR 201

    Output consensus of multi-agent systems with delayed and sampled-data

    Get PDF
    This paper considers the output consensus problem of high-order leader-following multi- agent systems with unknown nonlinear dynamics, in which the delayed and sampled outputs of the system are the only available data. The unknown nonlinear dynamics are assumed to satisfy the Lipschitz condition and the interconnected topologies are assumed to be undirected and connected. A distributed observer-based output feedback controller is proposed for the system to reach output consensus. Both of the bounds of the allowable delay and sampling period are also obtained. Sta- bility analysis shows that the considered systems are globally exponentially stable under the output feedback controller. Finally, a simulation example is given to validate our theoretical results.This work was supported in part by the National Natural Science Foundation of China (61273183, 61374028, and 61304162).http://www.ietdl.orgIET-CTAhb2017Electrical, Electronic and Computer Engineerin

    Hard superconducting gap in PbTe nanowires

    Full text link
    Semiconductor nanowires coupled to a superconductor provide a powerful testbed for quantum device physics such as Majorana zero modes and gate-tunable hybrid qubits. The performance of these quantum devices heavily relies on the quality of the induced superconducting gap. A hard gap, evident as vanishing subgap conductance in tunneling spectroscopy, is both necessary and desired. Previously, a hard gap has been achieved and extensively studied in III-V semiconductor nanowires (InAs and InSb). In this study, we present the observation of a hard superconducting gap in PbTe nanowires coupled to a superconductor Pb. The gap size (Δ\Delta) is ∼\sim 1 meV (maximally 1.3 meV in one device). Additionally, subgap Andreev bound states can also be created and controlled through gate tuning. Tuning a device into the open regime can reveal Andreev enhancement of the subgap conductance, suggesting a remarkable transparent superconductor-semiconductor interface, with a transparency of ∼\sim 0.96. These results pave the way for diverse superconducting quantum devices based on PbTe nanowires

    Ballistic PbTe Nanowire Devices

    Full text link
    Disorder is the primary obstacle in current Majorana nanowire experiments. Reducing disorder or achieving ballistic transport is thus of paramount importance. In clean and ballistic nanowire devices, quantized conductance is expected with plateau quality serving as a benchmark for disorder assessment. Here, we introduce ballistic PbTe nanowire devices grown using the selective-area-growth (SAG) technique. Quantized conductance plateaus in units of 2e2/h2e^2/h are observed at zero magnetic field. This observation represents an advancement in diminishing disorder within SAG nanowires, as none of the previously studied SAG nanowires (InSb or InAs) exhibit zero-field ballistic transport. Notably, the plateau values indicate that the ubiquitous valley degeneracy in PbTe is lifted in nanowire devices. This degeneracy lifting addresses an additional concern in the pursuit of Majorana realization. Moreover, these ballistic PbTe nanowires may enable the search for clean signatures of the spin-orbit helical gap in future devices

    Pose-Guided Human Parsing by an AND/OR Graph Using Pose-Context Features

    No full text
    Parsing human into semantic parts is crucial to human-centric analysis. In this paper, we propose a human parsing pipeline that uses pose cues, e.g., estimates of human joint locations, to provide pose-guided segment proposals for semantic parts. These segment proposals are ranked using standard appearance cues, deep-learned semantic feature, and a novel pose feature called pose-context. Then these proposals are selected and assembled using an And-Or graph to output a parse of the person. The And-Or graph is able to deal with large human appearance variability due to pose, choice of clothing, etc. We evaluate our approach on the popular Penn-Fudan pedestrian parsing dataset, showing that it significantly outperforms the state of the art, and perform diagnostics to demonstrate the effectiveness of different stages of our pipeline
    corecore